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Abstract—Future planetary exploration missions will require 
rovers to perform difficult tasks in rough terrain, with 
limited human supervision.  Knowledge of terrain physical 
characteristics would allow a rover to adapt its control and 
planning strategies to maximize its effectiveness.  This paper 
describes recent and current work at MIT in the area of on-
board terrain estimation and sensing utilizing visual, tactile, 
and vibrational feedback.  A vision-based method for 
measuring wheel sinkage is described.  A tactile method for 
on-line terrain parameter estimation is also presented.  
Finally, a method for terrain classification based on analysis 
of vibration in the rover suspension is described.  It is shown 
through simulation and experimental results that these 
methods can lead to accurate and efficient understanding of a 
rover’s physical surroundings. 
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 1. INTRODUCTION 
Future planetary exploration missions will require rovers to 
perform challenging mobility tasks in rough terrain.  Wheel-
terrain interaction has been shown to play a critical role in 
rough-terrain mobility [1].  For example, a rover traveling 
through loose drift material has very different mobility 
characteristics than one traveling over hard, crusty terrain.  
  
It would be desirable for rovers to gather on-line information 
about the surrounding terrain.  This can be done by 
estimating terrain physical parameters (e.g., cohesion, 
internal friction angle, shear deformation modulus, etc.), 
estimating terrain traversability via non-parametric means, or 
by classifying terrain into pre-defined groups with known 

traversability properties.  Knowledge of terrain 
characteristics would allow a rover to adapt its control and 
planning strategy to optimize its performance, such as 
maximizing traction or minimizing power consumption [2, 
3].  Also, terrain parameter estimation can improve scientific 
understanding of planetary surface composition [4,5]. 
 
This paper describes recent and current work in the Field and 
Space Robotics Laboratory at MIT in algorithm development 
for terrain estimation and sensing.  A vision-based method 
for measuring wheel sinkage is described.  It has been shown 
that wheel sinkage is a key variable in estimating wheel-
terrain interaction [1,6].  For example, a robot traversing 
loose sand might experience substantial wheel sinkage and 
poor mobility due to increased motion resistance. 
Conversely, a robot traversing firm clay might experience 
small wheel sinkage and high mobility. With knowledge of 
wheel sinkage, a mobile robot could modulate wheel torque 
to improve traction or adapt its motion plan to avoid 
potentially hazardous terrain. Wheel sinkage is also an 
important input to terrain identification and classification 
algorithms [4,6]. 
 
A terrain parameter estimation algorithm is presented that 
relies on a simplified form of classical terramechanics 
equations, and uses a linear-least squares estimator to 
compute terrain parameters in real time.  The method is 
computationally efficient, and is thus suitable for 
implementation on a rover with limited on-board 
computational resources.  Simulation and experimental 
results show that the algorithm can accurately and efficiently 
identify key terrain parameters for a variety of soil types.  
  
Finally, a method for terrain classification based on analysis 
of vibration in the rover suspension is described.  The 
algorithm uses principal component analysis-based classifier 
of vibration signals to identify unique terrain types.  
Experimental results show that the algorithm can quickly 
and efficiently distinguish between distinct terrain types. 
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These methods can lead to accurate and efficient 
understanding of a rover’s physical surroundings.  Such 
techniques could enhance rover safety and mobility, through 
integration with control and motion planning methods. 
 
 2. VISUAL WHEEL SINKAGE ESTIMATION 
The goal of the algorithm is to measure wheel sinkage in 
deformable terrain from a visual image. A more detailed 
treatment of this method is presented in [7]. Here we assume 
the presence of a camera mounted on the robot body, with a 
field of view containing the wheel. Sinkage is defined as a 
pair of angles from the vertical termed left and right terrain 
interface angles (see Figure 1). This represents a general 
description of wheel sinkage in uneven terrain. To determine 
these angles, only an annular region along the wheel rim 
(between rrim and rwheel) needs to be examined. This reduces 
computational requirements by eliminating much of the 
scene. 

θL θR
rimr
wheelr

 
Figure 1 - Rigid wheel sinking into deformable terrain with 

left (θL) and right (θR) terrain interface angles shown 
 

It is assumed that the location of the wheel relative to the 
camera is known. This is a reasonable assumption, since 
many robots have rigid suspensions. Robots with articulated 
suspensions (such as the Sojourner rover) are generally 
instrumented with suspension configuration sensors. Note 
that visual methods for identifying the wheel center could 
also be implemented. 
 
It is also assumed that the robot wheel rim is visually 
distinguishable from the surrounding terrain. This is 
generally true for rigid, metallic wheels or dark pneumatic 
tires in natural terrains. Visual contrast can be enhanced by 
coloring the wheel rim a non soil-like color. This  pixel-level 
difference in appearance eliminates the need for 
computationally-intensive texture analysis or stereo-based 
correlation. The algorithm instead relies on a relatively 
simple analysis of grayscale intensity along the wheel rim. 
 
Algorithm Description 

The algorithm consists of three steps: 1) wheel rim 
identification, 2) pixel intensity computation, and 3) terrain 
interface identification. The following sections describe 
these steps.  
 
 
 

Wheel Rim Identification and Classification⎯All points of 
interest on the wheel rim are first identified. Points of 
interest lie in a region between the inner wheel rim diameter 
rrim and the outer wheel rim diameter rwheel (see Figure 1). 
For rimless wheels or tires, rwheel corresponds to the outer tire 
diameter and rrim is chosen to be slightly less than rwheel. 
 
Points of interest in the annular region are divided into two 
regions corresponding to the left and right half of the wheel 
(see Figure 2). This is done since terrain entry generally 
occurs in one half of the wheel, and terrain exit occurs in the 
other. Thus the algorithm searches for one terrain interface 
in each region. Left and right wheel halves are determined 
with respect to the vector vdown. The vector vdown is a unit 
vector perpendicular to the pitch angle of the vehicle (e.g., 
on flat terrain, vdown is parallel to the gravity vector). 
 

downv
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Figure 2 - Annulus sections and vdown 

 
Pixel Intensity Computation⎯The average grayscale 
intensity is computed for every row of pixels in Sright and Sleft 
(see Figure 2). A row contains multiple pixels and is 
perpendicular to vdown. For each row the summed intensity is 
computed as the sum of each individual pixel’s intensity.  
Two arrays of summed row intensities are thus formed.  
 
Terrain Interface Identification⎯A one-dimensional spatial 
Gaussian filter is employed to smooth the intensity arrays 
and reduce the effects of noise. Here the summed row 
intensities are weighted by the number of pixels in a row to 
minimize the influence of noise in low pixel-count rows.  
 
A Gaussian distribution is approximated by a binomial 
distribution. This is applied to the summed pixel intensities 
to produce a pair of filtered intensity arrays.  A sample plot 
of filtered intensity vs. angular position can be seen in 
Figure 3.  

 
The location of the terrain interface is computed as the point 
of maximum change in intensity between rows. This exploits 
the fact that the wheel rim is a different color (generally 
brighter, for metallic wheels) than the terrain. 
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Figure 3 - Sample plot of average pixel intensity vs. angular 

position 
 
Experimental Results 

Experiments have been performed on the terrain 
characterization testbed shown in Figure 4. The testbed 
consists of a driven wheel mounted on an undriven vertical 
axis. A camera is mounted to the testbed so that it moves 
horizontally with the wheel, but not vertically.  Images from 
the testbed were collected under six different terrain and 
lighting conditions, including variable wheel slip and terrain 
unevenness conditions, variable soil colors, and with and 
without rocks. Lighting was varied from uniform, diffuse 
illumination to a point-source which cast sharp shadows. 

 

 
Figure 4 - Terrain characterization testbed 

 
Representative results are shown in Figure 5. Figure 5 shows 
the actual and visually-measured sinkage as a percentage of 
the wheel radius for an image set of a wheel moving through 
flat, dry bentonite clay under uniform lighting, with a high 
slip ratio. The visually-measured sinkage matches the actual 
sinkage very accurately. 
 
Over repeated trials with varying lighting conditions, the 
algorithm detected wheel sinkage with reasonably good 
accuracy. Some errors were caused by rocks occluding the 
wheel-terrain interface. While these small errors could be 
mitigated by a texture- or geometry-based rock detection 
algorithm, adding such an algorithm would drastically 
increase the computational requirements.  A more significant 
error source was uneven lighting.  Reflections off the wheel 

rim and shadowing on the uneven terrain led to 
misidentification.  Note that the robot body can also cause 
shadowing on the wheel.  However, errors due to shadowing 
tend to appear as easily-identifiable “outliers” (i.e., the errors 
are large anomalous changes in the visually-measured angle) 
that could be mitigated by intelligent filtering.  
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 Left Side Right Side 

Figure 5 - Actual and visually-measured sinkage for dried 
bentonite, high wheel slip, flat terrain, and diffuse lighting 

 
An alternative method for addressing errors caused by 
uneven lighting is to employ active lighting. Figure 6 shows 
a sample image from a series where a strobe was used to 
illuminate the wheel-terrain interface. Here the wheel was 
driving through topsoil, and the wheel rim was yellow, 
providing good contrast. The results are plotted in Figure 7. 
In shadowy conditions, tests using a strobe to illuminate the 
wheel resulted in RMS errors less than 2% of the radius.   
 

 
Figure 6 – Wheel traveling through topsoil with active 

lighting 
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Figure 7 - Actual and visually-measured sinkages for image 

set 7 (active lighting) 
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3. TERRAIN PARAMETER ESTIMATION 
The goal of this algorithm is to estimate critical terrain 
parameters via “touch” (i.e., through feedback from the 
rover wheel, such as torque, sinkage and slip).  The case of a 
smooth rigid wheel traveling through deformable terrain is 
considered, as this is the expected condition for planetary 
rovers.  A detailed treatment of this method is given in [4].  
The following analysis also applies to grousered wheels, 
since grousers can be modeled by an increased effective 
wheel radius. 
 
To estimate terrain parameters, equations relating the 
parameters of interest to physically measurable quantities 
must be developed.  The physical parameters of interest are 
the terrain cohesion c and the internal friction angle φ.  
These parameters can be used to compute the maximum 
terrain shear strength, τmax, from Coulomb’s equation: 
 φστ tanmaxmax += c  (1) 
where σmax is the maximum normal stress. 
 
In Figure 8, a vertical load W and drawbar pull DP are 
applied to the wheel by the vehicle suspension.  A torque T 
is applied at the wheel rotation axis by an actuator.  The 
wheel has angular velocity ω, and the wheel center possesses 
a linear velocity, V.  The angle from the vertical at which the 
wheel first makes contact with the terrain is denoted θ1.  The 
angle from the vertical at which the wheel loses contact is 
denoted θ2.  The vertical sinkage is z. 

 
Figure 8 - Rigid wheel on deformable terrain 

 
A stress region is created at the wheel-terrain interface, and 
is indicated by σ1 and σ2.  The angle from the vertical at 
which the maximum stress occurs is denoted θm. 
 
From Figure 8, force balance equations can be written as:  
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The shear stress can be computed as: 
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where k is the shear deformation modulus, r is the wheel 
radius, and i is the wheel slip, defined as ( )ωrVi −= 1  [9]. 
 
The normal stress at the wheel-terrain interface is given by: 

 ( ) nc zk
b
k

z ⎟
⎠

⎞
⎜
⎝

⎛ += φσ  (6) 

where b is the wheel width, kc and kφ are pressure sinkage 
moduli, and n is the sinkage exponent [9]. 
 
Note that shear and normal stress are functions of c and φ, 
among other variables.  Analytical solutions of Equations (2-
4) are required to obtain closed-form expressions for c and φ. 
 However, the equations’ complexity motivates the use of an 
approximate form of the fundamental stress equations. 
 
Figure 9 is a plot of the shear and normal stress distributions 
around the rim of a driven rigid wheel on various terrains.  
The shear and normal stress distribution curves are 
approximately triangular for a wide range of terrain.   
 
Based on this observation, a linear approximation of shear 
and normal stress distribution equations can be written as: 
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Figure 9 - Normal (solid) and shear stress (dotted) 
distribution around driven rigid wheel for (a) dry sand, (b) 

sandy loam, (c) clayey soil, and (d) snow at moderate wheel 
slip [1, 9] 
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Simplified forms of the force balance equations can be 
written and solved for the load W and torque T:  
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An additional equation can be written if the location of the 
maximum shear and normal stress are assumed to occur at 
the same location θm: 
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The simplified equations can be solved for the cohesion and 
internal shear angle and rearranged in the following form 
(after additional simplification): 
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Equation (14) is a single equation in two unknowns.  At least 
two unique instances of Equation (14) are required to 
determine c and φ.  In practice numerous unique instances of 
Equation (14) can be written as a rover moves through 
terrain.  Least-squares techniques can then be used to solve 
for c and φ. 
 
Figure 10 shows representative results of parameter 
estimation simulation for dry, sandy soil.  It can be seen that 
the estimated parameters c and φ quickly converge to the 
true values of c = 2.5 and φ = 27.0.   
 
Figure 11 shows experimental results of parameter 
estimation of dried bentonite clay performed on a wheel-
terrain interaction testbed (see Figure 5).  Again, it can be 
seen that c and φ quickly approach the measured values of c 
= 0.7 and φ = 32.1. 
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Figure 10 - Simulated estimation of cohesion (dotted) and 

internal friction angle (solid) 
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Figure 11 - Experimental estimation of cohesion (dotted) 

and internal friction angle (solid) 
 
These results show that the algorithm produces accurate, on-
line parameter estimates on an experimental system with 
noisy sensors.  The algorithm takes only a few msec per 
estimation cycle on a desktop PC, thus making it feasible for 
on-board implementation on a rover with limited 
computational resources.   
 
Terrain parameter estimates from this algorithm can be used 
to optimize a rover’s mobility and safety, and are themselves 
useful scientific information. 
 
4. VIBRATION-BASED TERRAIN CLASSIFICATION 

The goal of this algorithm is categorize terrain that a rover is 
currently traversing into gross terrain classes (i.e. “sandy 
terrain”, “rocky terrain”, “mixed terrain”) based on analysis 
of vibration signals present in the rover suspension.  
Empirical observation has shown that different terrain 
physical properties give rise to unique vibration signatures in 
the lightly-damped rover wheel assembly and suspension 
frame.  Here we assume that an accelerometer or contact 
acoustic transducer will be used to record the high-frequency 
vibrations.  We also assume the sampling rate is sufficiently 
high to capture frequencies of interest. 
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Algorithm Description 
The algorithm relies on principal component analysis (PCA) 
to distinguish between terrain classes.  The algorithm is 
composed of two steps: a priori analysis, and on-line 
classification.  The following sections describe these steps.  
For simplicity we here present the case where a rover 
attempts to classify two distinct terrain types. 
 
A priori analysis⎯A priori experiments are performed with 
terrain classes that grossly correspond to classes the rover 
would like to identify on-line.  For example, a priori 
experiments might be performed with sandy terrain and 
crusty terrain.   
 
For a given terrain pair, raw vibration data is collected. This 
data is divided into short segments for which the log power 
spectral density is estimated.  Matrices Ysand and Ygravel are 
summaries of the data, with each column containing the 
spectral content for a given segment and each row showing 
the variation in spectral content at a given frequency as a 
function of time: 
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The two datasets are then combined, ][ gravelsand YYY =  

( nm×ℜ∈Y ), and the rows are mean-adjusted to form the 
matrix Ŷ : 
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Singular value decomposition is used to separate Ŷ  into 
three matrices, Ua, Sa, and Va: 
 ( )aaa

SVD VSUY ′⎯⎯→⎯ ,,ˆ  
Here, Ua and Va are unitary matrices and Sa is a diagonal 
matrix of singular values.  The matrix Ua is assumed to be 
composed of orthogonal signal and noise subspaces.  For 
signal representation we extract k principal components 
corresponding to the signal space to create the matrix Usignal. 
In practice we have used k=6, as it appears to give good 
signal representation without overfitting.  Similarly, the first 
k rows and columns of S will be referred to as Ssignal. These 
two matrices can be considered to be a map from the full 
frequency space (Rm) to the signal space (Rk). The signal 
space mappings of the separate datasets Ysand and Ygravel are 
computed as: 
 sandsignalsignalsand YUSV ′=′ −1  (18) 

 gravelsignalsignalgravel YUSV ′=′ −1  (19) 
In this representation the columns of sandV′  and gravelV′  still 
correspond to a time segment, and the rows correspond to a 
principal component. Taking each column as a vector in a k-

dimensional space, sandV′  and gravelV′  represent point-clouds 
centered on sandv′  and gravelv′  respectively.  

 
One candidate discrimination metric for an arbitrary vector 
v′  in this space would be the dot product of v′  with the 
difference between sandv′  and gravelv′ . This rarely yields 
satisfactory results, however, because the distributions of 

sandV′  and gravelV′  may have vastly different scales in the 
different dimensions.  
 
To determine a more appropriate scaling of the space, it is 
important to examine the separation of the points within a 
class, rather than between classes. This is accomplished by 
performing a second singular value decomposition, this time 
on a matrix V′ˆ , formed by merging mean-adjusted matrices 

sandV̂′  and gravelV̂′ : 

 [ ]11ˆ Lsandsandsand vVV ′−′=′  (20) 

 [ ]11ˆ Lgravelgravelgravel vVV ′−′=′  (21) 

 [ ]gravelsand VVV ′′=′ ˆˆˆ  (22) 

 ( )bbb
SVD VSUV ′⎯⎯→⎯′ ,,ˆ .  

bV′  has columns associated with a given segment, and rows 
associated with a combination of the principal components. 
More importantly, the norm of each of the rows of bV′  is 1, 
meaning that the standard deviations of the combined intra-
set distributions is equal for all of the dimensions. This 
scaling of the principal component space is appropriate for 
classifying data. 
 
Our discrimination metric is therefore a dot product of a 
vector of test data ytest with  the difference of class means 
( gravelsand vv ′−′ ) in this scaled space.  Putting all of these 
transformations together, we arrive at the final 
discrimination metric to distinguish between sandy terrain 
and gravel: 

 ( ) ( ) testsignalsignalbbbbsandgraveltestd yUSUSSUvvy ⎟
⎠
⎞

⎜
⎝
⎛ ′′′′′−′= −−− 111)( (23) 

This is the linear combination of frequencies which best 
discriminates between the two datasets. 
 
On-Line classification⎯The a priori analysis results in a 
scalar metric for each terrain class of interest.  In practice, 
multiple training sets would be collected under varying 
conditions (wheel slip, wheel load, wheel velocity) for the 
same terrain class.  A mean and standard deviation of the 
discrimination metric would be collected for each class and 
stored on-line. 
 
During rover traverse, a discrimination metric is computed in 
real-time.  Terrain is classified as belonging to a class (1 or 
2) if it falls within the band defined by the discrimination 
metric mean plus and minus one standard deviation.  If the 
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metric does not fall within either band, the terrain is 
classified as unknown. 
 
Experimental Results 

Experiments have been performed on the terrain 
characterization testbed shown in Figure 4, here equipped 
with an inexpensive contact acoustic transducer mounted to 
the wheel assembly.  Loose gravel and the Mars soil 
simulant JSC Mars-1 were the terrain classes of interest [10]. 
 Physically, the gravel was composed of 1-2 cm diameter 
irregularly shaped stones, while the JSC Mars-1 contained a 
range of particle sizes ranging from fine sand to 1-2 cm 
rocks. 
 
A priori training data was collected for each set over varying 
wheel slip, wheel sinkage, and wheel speed.  Discrimination 
tests were performed using the leave-one-out method for 
training the algorithm. 
 
Preliminary results show that the algorithm can construct a 
reliable scalar metric for discriminating between the loose 
gravel and Mars-1 soil simulant.  A sample set of training 
data is shown in Figures 12 and 13.  From Figure 12 it is 
clear that there is a large region of confusion between the 
two terrain types if the first two principal components are 
used for discrimination.  Figure 13 shows the same data, but 
with the discrimination metric along the x-axis.  A simple 
threshold of this discrimination metric correctly classifies 
almost all of the training data. 
 
In Figure 14, the discrimination metric is applied to an 
untrained data set containing a transition from gravel to 
Mars-1 soil.  The transition from one terrain type to the other 
is easy to detect. 
 
These results suggest that vibration-based terrain sensing has 
much promise for quick, efficient, and robust classification 
of terrain. 
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Figure 12 - Gravel and JSC Mars-1 plotted in the first two 

principal components 
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Figure 13 - Gravel and JSC Mars-1 plotted with the 

proposed discrimination metric along the x-axis 
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Figure 14 - Time series of discrimination metric over an 
untrained transition from gravel to JSC Mars-1 

 
5. CONCLUSIONS AND FUTURE WORK 

This paper has presented methods for terrain estimation and 
sensing.  A vision-based method for measuring wheel 
sinkage was described and shown to be accurate and 
relatively robust to lighting variation.  A method for on-line 
terrain parameter estimation was presented and shown to be 
effective in simulation and experimental trials.  Finally, a 
methods for vibration-based classification of terrain type was 
presented and experimentally validated for several different 
terrain types.  It was shown that these techniques can be used 
to gain important information about a rover’s surrounding 
terrain. 
 
Future work in this area will focus on intelligently 
integrating multiple sensing modalities to improve terrain 
characterization. 
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